Data Assimilation to Extract Soil Moisture Information from SMAP Observations
نویسندگان
چکیده
This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural network (NN) and physically-based SMAP soil moisture retrievals were assimilated into the National Aeronautics and Space Administration (NASA) Catchment model over the contiguous United States for April 2015 to March 2017. By construction, the NN retrievals are consistent with the global climatology of the Catchment model soil moisture. Assimilating the NN retrievals without further bias correction improved the surface and root zone correlations against in situ measurements from 14 SMAP core validation sites (CVS) by 0.12 and 0.16, respectively, over the model-only skill, and reduced the surface and root zone unbiased root-mean-square error (ubRMSE) by 0.005 m3 m−3 and 0.001 m3 m−3, respectively. The assimilation reduced the average absolute surface bias against the CVS measurements by 0.009 m3 m−3, but increased the root zone bias by 0.014 m3 m−3. Assimilating the NN retrievals after a localized bias correction yielded slightly lower surface correlation and ubRMSE improvements, but generally the skill differences were small. The assimilation of the physically-based SMAP Level-2 passive soil moisture retrievals using a global bias correction yielded similar skill improvements, as did the direct assimilation of locally bias-corrected SMAP brightness temperatures within the SMAP Level-4 soil moisture algorithm. The results show that global bias correction methods may be able to extract more independent information from SMAP observations compared to local bias correction methods, but without accurate quality control and observation error characterization they are also more vulnerable to adverse effects from retrieval errors related to uncertainties in the retrieval inputs and algorithm. Furthermore, the results show that using global bias correction approaches without a simultaneous re-calibration of the land model processes can lead to skill degradation in other land surface variables. Remote Sens. 2017, 1179, 1; doi:10.3390/rs9111179 www.mdpi.com/journal/remotesensing Remote Sens. 2017, 1179, 1 2 of 24
منابع مشابه
Disaggregation of SMAP radiometric soil moisture measurements at catchment scale using MODIS land surface temperature data
Satellite soil moisture observations often require the enhancement of spatial resolution prior to being used in climatic and hydrological studies. This study employs the thermal inertia theory to downscale the 36 km radiometric data of the NASA’s Soil Moisture Active/Passive Mission (SMAP) into 1 km resolution. Regressions between daily temperature difference and daily mean soil moisture were e...
متن کاملStandardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States
Droughts can severely reduce the productivity of agricultural lands and forests. The United States Department of Agriculture (USDA) Southeast Regional Climate Hub (SERCH) has launched the Lately Identified Geospecific Heightened Threat System (LIGHTS) to inform its users of potential water deficiency threats. The system identifies droughts and other climate anomalies such as extreme precipitati...
متن کاملThe SMAP level 4 carbon product for monitoring terrestrial ecosystem-atmosphere CO2 exchange
The NASA Soil Moisture Active Passive (SMAP) mission Level 4 Carbon (L4_C) product provides model estimates of Net Ecosystem CO2 exchange (NEE) incorporating SMAP soil moisture information as a primary driver. The L4_C product provides NEE, computed as total respiration less gross photosynthesis, at a daily time step and approximate 14-day latency posted to a 9-km global grid summarized by plan...
متن کاملApplication of a Hillslope-Scale Soil Moisture Data Assimilation System to Military Trafficability Assessment
Soil moisture is an important environmental variable that impacts military operations and weapons systems. Accurate and timely forecasts of soil moisture at appropriate spatial scales, therefore, are important for mission planning. We present an application of a \ soil moisture data assimilation system to military trafficability assessment. The data assimilation system combines hillslope-scale ...
متن کاملAssimilation of Smos Retrieved Soil Moisture into the Land Information System
Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensembl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017